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THE GROUP A L G E B R A  OF THE 
INFINITE SYMMETRIC GROUP 

BY 

EDWARD FORMANEK AND JOHN LAWRENCE* 

ABSTRACT 

The rational group algebra of the infinite symmetric group is studied using 
Young diagrams. Maximal and prime ideals are characterized and the maximal 
condition on ideals is proved. 

Let S, denote the symmetric group of degree n, the group of permutations of 

{ 1 , 2 , . . . ,  n}. There are inclusions 

S~ CS2CS3"'" 

and S denotes the union of the S,. S can also be described as the group of those 

permutations of a countable set which move only finitely many points. 

The purpose of this paper is to investigate the group algebra F IS], where F is 

a field of characteristic zero, particularly its ideal structure. F IS] is the 

ascending union of the group algebras F[S,], and the ideal structure of each 

F IS,] is given by the theory of Young diagrams. The set of Young diagrams is a 

partially ordered set and there is a one-to-one correspondence between ideals of 

F IS] and certain collections of Young diagrams. By studying the Young 

diagrams, conclusions can be drawn about F [S] .  

One reason for studying F IS] is that, because of the Young theory, it can be 

investigated far more thoroughly than the group algebra of an arbitrary locally 

finite group and so may give insights which have wider application. However,  we 

feel that the main interest of our work is that F IS] turns out to have a number of 

curious properties: F IS] satisfies the ascending chain condition on ideals--in 

fact, every ideal is principal; any sum of prime ideals of F IS] is a prime ideal or 

all of F [S ] ;  and F[S] has precisely two maximal ideals. We do not know 
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whether these properties are shared by a large class of locally finite group 

algebras or whether they are just accidental properties of F [S]. 

1. Young diagrams 

In this section we describe the relation between Young diagrams and ideals of 

F [S ] .  For our purposes all that matters is the shape of the Young diagram, 

which means that we are really only talking about partitions of n. However, we 

will use the Young diagram terminology since it makes certain "geometr ic"  

observations easier and follows common usage. We will only use the most basic 

facts of the theory. 

Let n be a positive integer. With each partition 

{n,>-n2 ".. => nk >0 :  n~+ . - .  +nk = n }  

of n, the associated Young diagram is the planar array (part of a chessboard) of k 

rows with n~ boxes in the ith row. For example, the partition {5,2,2,1} 

corresponds to the Young diagram 

The set ~ of all Young diagrams (of all sizes) is partially ordered as follows: If 

A = { a , , . . . , a r }  and B = {b~, . . . ,  K} are Young diagrams, then A => B if r >= s 

and a, => b~ for i = 1, • • •, s. In other words, as planar diagrams A is obtained 

from B by adjoining boxes. The join of A and B is 

A v B = {max(a~,b,),  max(a2, b2),- ' -} 

where, by convention, a, = 0 if i > r, bj = 0 if j > s. A v B is the smallest Young 

diagram greater than both A and B. 

The fundamental theorem which follows gives the relation between these 

diagrams and the ideal structure of F[S]. Recall that "ideal" always means 

"two-sided ideal". 

THEOREM 1. (See [1, 4.27, 4.51, 4.52].) 

1) Let D , , . . . , D ,  be the Young diagrams of size n. Then F [S . ]  has t 

irreducible orthogonal central idempotents e (D~) , . . . , e (D, )  and each simple 

factor e(D~)F [S,] is isomorphic to a full matrix ring over F. 
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2) Suppose m < n and D is a Young diagram of size m. Let D~, . . . , Dk be all 

the Young diagrams of size n such that D < D ,  Then {e(D)} and 

{e(DO, • • ", e(Dk )} generate the same ideal ofF [S.] (and hence o f f  [S]). [] 

As above, if D is a diagram of size n, e(D) denotes the associated central 

idempotent of F[S,] (which of course is not necessarily central in F[S])  and 

I (D)=(e (D) )  

denotes the ideal of F IS] generated by e(D). More generally, if 9~, is any subset 

of 9,  

I(9,,) = (e(D): D E 9,,) 

is the ideal of F [S] generated by {e(D): D E 9,}. Conversely, if A is an ideal of 

F [S] we set 

A ( A ) = { D E g :  e ( D ) E A } .  

By virtue of Theorem 1(2), T = A(A) _C 9 has the following properties. 

1) If D E T, E E 9 and D <= E, then E E T. 

2) I f { E E g :  E > D } C _ 7 ' ,  then D E T .  

We will say that subsets T of 9 having the above two properties are closed. 

The closure, cl (T), of a subset T of 9 will be the smallest closed subset of 9 

containing 7". 

The next theorem summarizes the formal properties of I and A. It is based on 

the observation that since F [S] = U F [S,], each ideal A of F [S] is completely 

determined by its intersections with the F [S,] and hence is completely deter- 

mined by 9 ( A ) .  

THEOREM 2. Let A and B be ideals of F [ S ] and T a subset of 9. 

1) IA(A)  = A ; AI(T) = cl (T). 

2) A(A A B) = A(A)fq A(B); A(A + B) = c l (h(A)  UA(B)). 

3) A ~ A(A) gives a one-to-one correspondence (with inverse I ( ) )  between 

ideals o f f  [S] and closed subsets of g. [] 

2. The prime ideals of F[S] 

A box in a Young diagram will be called extreme if no box lies below it or to its 

right. For example, the extreme boxes in the Young diagram {5,2,2,1} are 

shaded below 
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The extreme boxes are precisely those which, when removed, leave a Young 

diagram. Thus {5,2,2,1} has exactly three immediate predecessors in the 

partially ordered set of all Young diagrams, namely {4,2,2, 1}, {5,2, 1,1} and 

{5, 2, 2}. 

A rectangular Young diagram (that is, a diagram of the form { n , . . . , n  (k 

times)}) has only one extreme box and hence only one immediate predecessor in 

the partially ordered set of Young diagrams. If A, B and C are Young diagrams 

with C rectangular and A v B => (7, then A or B contains the extreme box of C 

and hence A --- B or B _-> C. Conversely, if C is not rectangular then there are 

Young diagrams strictly smaller than C whose join is C. In fact C is the join of 

the rectangular diagrams containing its extreme boxes. For example 

{5,2,2,1} = {5} v {2,2,2} v {1, 1,1,1}. 

The next few theorems show that there is a close relationship between these 

properties of rectangular diagrams and the prime ideal structure of F [S]. 

Before stating the next theorem we make a ring theoretic remark about F [S]. 

Since every ideal of F [S] is generated by idempotents, every ideal of F [S] is 

idempotent. Hence for any ideals A, B 

A B C _ A  N B = ( A  A B ) 2 C A B  

so that AB = A N B. We will use this fact often. 

THEOREM 3. Let A be an ideal of F [S] and A(A ) the corresponding set of 

Young diagrams. Then A is prime if and only if every minimal diagram in A(A ) is 
rectangular. 

PROOF. ~ Suppose A(A) contains a minimal diagram D,, which is not 

rectangular. Then Do can be expressed as the join D1 v D2 of two diagrams, each 

of which is an immediate predecessor of D,,. I(D~) and I(D2) are ideals which are 

not contained in A. Further 

A I ( D , ) = { D E @ : D > = D , }  for i = 0 , 1 , 2 ,  so 

A(/(DI) n I(D2)) = AI(D,) n AI(D2) C AI(D,,) C A(A ). 

Hence I(D~) N I(D2) C_ A, so A is not prime. 
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Suppose A is not prime and let B, C be ideals such that B , C ~ A ,  

B f-I C C_ A. Clearly we may assume that 

B = (e(D,)),  C = (e(D2)) 

for diagrams D,, D2. Then D~, D 2 E A ( A ) ,  but D, v D2E A(A) since B f-/C = 

(e(D, v D2)). Since D~ v D_~ E A(A), D~ v D2=> E for some minimal diagram E 

of A(A). If E were rectangular, then D~ v D2=> E would imply that D, => E or 

D2=> E and hence that D~ E A(A) or D2E A(A) .  This is not the case, so E is a 

minimal diagram of A(A ) which is not rectangular. [] 

LEMMA 4. Let T be a set of Young diagrams. Then I ( T) = F [ S ] if and only i[ 

T contains an m x l and a l x n rectangle for some m and n. 

PROOF. ~ Suppose T contains no m x 1 rectangle. Then T C {D C 9 "  D => 

{1,1}}, so I(T)C_I{1,1},  a proper ideal. Similarly, if T contains no I x n  

rectangle, then I(T)C_ I{2}, a proper ideal. 

4z Conversely, suppose A = {m} and B = { 1 , . . . ,  1 (n times)} lie in T. If D is 

a diagram of size mn, it is easy to see that either the first row of D has length 

=> m or the first column of D has length => n and so D _-> A or D _-> B. Hence 

e ( D ) E  I ( T )  for all diagrams D of size ran, and so 

l = ' ~ { e ( D ) :  size D = m n } E I ( T ) .  [] 

Noting that I{1, 1} and I{2} are both maximal ideals of F[S],  we have 

COROLLARY 5. F [S] has precisely two maximal ideals, I{1, 1} and I{2}. They 

are, respectively, the kernels of the F-homomorphisms tr, "c : F [S] --~ F defined for 

g E S by tr(g) = sign (g) and r (g )  = l, where sign(g) = -+ 1 according as g is an 

even or an odd permutation. [] 

For sets of rectangular Young diagrams a stronger conclusion is possible. 

LEMMA 6. Let T be a set of pairwise incomparable rectangles which does not 

contain both an m x 1 and a 1 x n diagram. Then T consists of minimal elements 

of cl (T). Hence I ( T ) =  l(cl (T)) is prime. 

PROOF. Let J = {D E ~ : D _-> E for some E E T}. Then T C J C cl (T)  and 

showing that J = cl (T) is equivalent to showing that every minimal element of 

c l (T)  lies in T. 

Suppose conversely that J ~  cl (T). Then there is a diagram Do E cl (T) such 

that Do E J but every successor of Do lies in J. By hypothesis, T either contains 
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no m x 1 diagram or no 1 x n diagram, and we assume the former (the argument 

is similar in the latter case). Now let 

D, ,={n , , ' ' ' , nk}  and D , = { n ~ + l , n , . . . , n k } .  

In other words, D, is obtained from D,, by adding a single box to the first row. 

D , ~ J ,  so D,>=E for some E E  T. By assumption D,,ffJ, so D, ,NE and E 

must be the (n, + l) x 1 rectangle, a contradiction. [] 

If A is any ideal and T is the set of minimal diagrams in A(A), then 

A ( A ) = c I ( T )  and A = I(T). Thus Theorem 3 says that any prime ideal is 

generated by idempotents e(D) with D rectangular. Conversely, if T is a set of 

rectangular diagrams, then Lemma 6 says that (e(D):  D E T) is a prime ideal if 

it is not all of F [S]. Combining these observations yields 

THEOREM 7. The sum of a family of prime ideals of F [S] is either a prime 

ideal or all o fF [S]. [] 

3. The ascending chain condition of ideals 

We remark that when we say that an ideal is finitely generated we mean that it 

is finitely generated as a two-sided ideal. The finite generation of ideals in this 

sense is clearly equivalent to the ascending chain condition on ideals. 

LEMMA 8. A set T of pairwise incomparable rectangular Young diagrams is 

finite. 

PROOF. T contains at most one rectangle of a given width m or a given 

length n. But if T contains an m x n rectangle then every rectangle in T either 

has width _<- m or length _-< n. Hence T is finite [] 

REMARK. It can be shown by a more elaborate combinatorial argument that 

any set of pairwise incomparable Young diagrams is finite. We have chosen a 

partly ring theoretic approach to show that F[S] has the ascending chain 

condition on ideals because it seems easier. 

COROLLARY 9. If A is a prime ideal of F [S], then A is finitely generated. 

PROOF. A is generated by the idempotents e(D), as D ranges over the 

minimal diagrams in A(A ). Since A is prime, all the minimal diagrams of A(A ) 

are rectangular, by Theorem 3. Since they are pairwise incomparable, Lemma 8 

implies that they are finite in number and hence that A is finitely generated. [] 

THEOREM 10. F[S l satisfies the ascending chain condition on ideals. 
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PROOF. Assume not. Then F [S ]  has non-finitely generated ideals and by 

Zorn's lemma contains a maximal such ideal A. We claim that A is prime. If not, 

let A = B O C  where B and C are properly larger than A. Then A(A)=  

A(B)A A(C). By the maximality of A, B and C are finitely generated and so 

A(B) and A(C) have only finitely many minimal elements, say D z , . . . , D k  and 

El,: • ", EI respectively. 

Now suppose D is a minimal diagram of A(A). Then D _-> D,  E, for some i 

and j. Thus D~ v E~ =< D but 

D, v Ej E A(B) O A(C) = A(A ). 

Hence D, v Ej = D since D is a minimal diagram of A(A). It follows that the 

minimal elements of A(A) all belong to the finite set 

{D, v E~: i = l , . . . , k ,  j =  l , . . . , l } .  

Thus A is finitely generated, contradicting the choice of A. This establishes the 

claim that A is prime which, together with Corollary 9, gives a final contradic- 

tion. [] 

If A is an ideal of F [S], then A is finitely generated and hence generated by 

A N F[S , ]  for some n. Since every ideal of F[S,]  is principal, Theorem 10 can 

be sharpened to 

COROLLARY 1 1. Every ideal o f F  [S] is generated by a single element. [] 
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